161 research outputs found

    Elliptic Genus Derivation of 4d Holomorphic Blocks

    Full text link
    We study elliptic vortices on C×T2\mathbb{C}\times T^2 by considering the 2d quiver gauge theory describing their moduli spaces. The elliptic genus of these moduli spaces is the elliptic version of vortex partition function of the 4d theory. We focus on two examples: the first is a N=1\mathcal{N}=1, U(N)\mathrm{U}(N) gauge theory with fundamental and anti-fundamental matter; the second is a N=2\mathcal{N}=2, U(N)\mathrm{U}(N) gauge theory with matter in the fundamental representation. The results are instances of 4d "holomorphic blocks" into which partition functions on more complicated surfaces factorize. They can also be interpreted as free-field representations of elliptic Virasoro algebrae.Comment: 15 pages, 2 figure

    Elliptic Genera in Gauged Linear Sigma Models

    Get PDF

    Guided Stereo Matching

    Full text link
    Stereo is a prominent technique to infer dense depth maps from images, and deep learning further pushed forward the state-of-the-art, making end-to-end architectures unrivaled when enough data is available for training. However, deep networks suffer from significant drops in accuracy when dealing with new environments. Therefore, in this paper, we introduce Guided Stereo Matching, a novel paradigm leveraging a small amount of sparse, yet reliable depth measurements retrieved from an external source enabling to ameliorate this weakness. The additional sparse cues required by our method can be obtained with any strategy (e.g., a LiDAR) and used to enhance features linked to corresponding disparity hypotheses. Our formulation is general and fully differentiable, thus enabling to exploit the additional sparse inputs in pre-trained deep stereo networks as well as for training a new instance from scratch. Extensive experiments on three standard datasets and two state-of-the-art deep architectures show that even with a small set of sparse input cues, i) the proposed paradigm enables significant improvements to pre-trained networks. Moreover, ii) training from scratch notably increases accuracy and robustness to domain shifts. Finally, iii) it is suited and effective even with traditional stereo algorithms such as SGM.Comment: CVPR 201

    Perturbative evaluation of circular 1/2 BPS Wilson loops in N = 6 Super Chern-Simons theories

    Full text link
    We present a complete two-loop analysis of the quantum expectation value for circular BPS Wilson loops in ABJ(M) theories. We examine in details the 1/2 BPS case, that requires non-trivial fermionic couplings with the contour, finding perfect agreement with the exact matrix model answer at zero framing. The result is obtained through a careful application of DRED regularization scheme, combined with a judicious rearrangement of the relevant perturbative contributions that reduces the computation to simple integrals. We carefully analyze the contribution of fermions that is crucial for the consistency with the localization procedure and point out the arising of pivotal evanescent terms, discussing their meaning in relation to Ward identities.Comment: 32 pages, 5 figures, Referemces adde

    Real-time self-adaptive deep stereo

    Full text link
    Deep convolutional neural networks trained end-to-end are the state-of-the-art methods to regress dense disparity maps from stereo pairs. These models, however, suffer from a notable decrease in accuracy when exposed to scenarios significantly different from the training set, e.g., real vs synthetic images, etc.). We argue that it is extremely unlikely to gather enough samples to achieve effective training/tuning in any target domain, thus making this setup impractical for many applications. Instead, we propose to perform unsupervised and continuous online adaptation of a deep stereo network, which allows for preserving its accuracy in any environment. However, this strategy is extremely computationally demanding and thus prevents real-time inference. We address this issue introducing a new lightweight, yet effective, deep stereo architecture, Modularly ADaptive Network (MADNet) and developing a Modular ADaptation (MAD) algorithm, which independently trains sub-portions of the network. By deploying MADNet together with MAD we introduce the first real-time self-adaptive deep stereo system enabling competitive performance on heterogeneous datasets.Comment: Accepted at CVPR2019 as oral presentation. Code Available https://github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stere

    Computer vision for 3d perception and applications

    Get PDF
    Effective 3D perception of an observed scene greatly enriches the knowledge about the surrounding environment and is crucial to effectively develop high-level applications for various purposes [...

    TemporalStereo: Efficient Spatial-Temporal Stereo Matching Network

    Full text link
    We present TemporalStereo, a coarse-to-fine based online stereo matching network which is highly efficient, and able to effectively exploit the past geometry and context information to boost the matching accuracy. Our network leverages sparse cost volume and proves to be effective when a single stereo pair is given, however, its peculiar ability to use spatio-temporal information across frames allows TemporalStereo to alleviate problems such as occlusions and reflective regions while enjoying high efficiency also in the case of stereo sequences. Notably our model trained, once with stereo videos, can run in both single-pair and temporal ways seamlessly. Experiments show that our network relying on camera motion is even robust to dynamic objects when running on videos. We validate TemporalStereo through extensive experiments on synthetic (SceneFlow, TartanAir) and real (KITTI 2012, KITTI 2015) datasets. Detailed results show that our model achieves state-of-the-art performance on any of these datasets. Code is available at \url{https://github.com/youmi-zym/TemporalStereo.git}
    corecore